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ABSTRACT

A formulation for min-max clairvoyant fusion (also known as continuum fusion) is developed that
exploits the invariance of hypothesis testing statistics to monotonic transformations. In addition
to generalizing an earlier formulation based on manipulated thresholds, the new formulation
leads to efficient algorithms for two of the most widely advocated fusion “flavors:” one based on
combining detectors with the same false alarm rate, and one based on constant detection rate.
These algorithms are used to investigate and compare the performance of different detectors for
a class of problems that arises from detecting small or weak targets in hyperspectral imagery.
The experiments are performed on simulated data from well-defined distributions so as to isolate
the effect of different flavors of fusion from the effects of model mismatch.

Keywords: composite hypothesis testing, statistical data analysis, continuum fusion, clairvoy-
ant fusion, min-max detector, target detection, multispectral, hyperspectral imagery

1. INTRODUCTION

Hyperspectral imagery – with upwards of hundreds of spectral channels, and sometimes millions
of pixels – provides a target detection tool with potentially exquisite discriminative ability. But
such detection requires good models both of the desired target and of the background clutter,
and these models are inevitably plagued by uncertainty, complexity, and ambiguity.

Statistical hypothesis testing provides a mathematical framework that addresses these issues
in a way that is both principled and practical. In this framework, the two hypotheses (target
present and target absent) are distinguished by likelihood functions of a measurement (typically
the radiance or reflectance spectrum at a pixel, possibly augmented by neighborhood pixel infor-
mation). The problem becomes more challenging when one or both of the competing hypotheses
are composite, which is to say that they involve unknown nuisance parameters. The general-
ized likelihood ratio (GLR) has been the workhorse solution to this problem for decades, but
a new mathematical approach – originally called continuum fusion1–9 (CF), and more recently
min-max fusion10–12 or clairvoyant fusion8,13 (also CF) – has recently been suggested as a way
to address this composite hypothesis testing problem.

This paper advances the development of CF by presenting a generalized formulation of the
CF process, and by providing algorithms that implement CF for two of the “flavors” of CF
that have been proposed: one based on constant false alarm rate (CF-cfar) and one based on
constant probability of detection (CF-cpd). This in turn will enable numerical comparison of
CF and GLR detectors.
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Section 2 sets up the background for this paper, describing statistical hypothesis testing in
general, the distinction between decision rules and statistics (the latter are more general), and
a formulation for CF based on manipulating the threshold. In Section 3, the new formulation of
CF is presented, based on monotonic recalibration, and Section 4 exploits this new formulation
to provide algorithms that can efficiently apply different flavors of CF to data drawn from
arbitrary distributions. Section 5 uses these algorithms to investigate the CF-cfar and CF-cpd
flavors of CF for detecting additive targets against non-Gaussian backgrounds. Conclusions are
presented in Section 6.

2. STATISTICAL HYPOTHESIS TESTING

In the statistical hypothesis testing framework, one begins with two competing hypotheses. The
“null” hypothesis Ho is that there is no target, while the “alternative” H1 says that a target is
present. From a measurement x, the task is to choose between Ho and H1. A decision rule is a
binary function B(x) whose value (0 or 1) specifies the choice of hypothesis for each x. There
are two kinds of errors that can be made: if there is no target but B(x) = 1, that is a false alarm
(also known as a Type I error); if a target is present but B(x) = 0, that is a missed detection
(or Type II error).

2.1 Decision rule vs. Statistic

Many detectors are implemented in terms of a statistic: a real-valued function T (x) which
characterizes the “target-ness” corresponding the measurement x. A larger T (x) generally
indicates more confidence that there is a target where x was measured. By comparing a statistic
to a threshold, one obtains a decision rule. This can be written B(x) = {T (x) ≶ λ}, where
T (x) is the statistic and λ is the threshold. The ‘≶’ symbol corresponds to the notion that when
T (x) < λ, then x is declared a background element; and when T (x) > λ, then x is declared a
target.† Different values of λ correspond to nested surfaces in x space.

2.2 Performance measures and ROC curves

Let pb(x) be the distribution of a measurement x when it is drawn from the background; and
let pt(x) be the target distribution. The false alarm rate Pfa corresponds to the fraction of
background pixels which are declared targets: Pfa =

∫
B(x)pb(x) dx. The detection rate is the

fraction of actual target pixels which are declared targets: Pd =
∫
B(x)pt(x) dx. In terms of

detectors that are implemented as statistics, we can write

Pfa(λ) =

∫
T (x)>λ

pb(x) dx (1)

Pd(λ) =

∫
T (x)>λ

pt(x) dx (2)

†The case when T (x) = λ can be dealt with in an elegant and consistent way,14 but it requires
further formalism that does not address the issues of concern in this paper. For the examples considered
here, T (x) = λ corresponds to a measure-zero set of x values anyway.
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where the integration is over the points x for which T (x) > λ. Now, Pfa and Pd are functions
of λ. By sweeping over a range of values of λ, one can trace out the ROC (receiver operator
characteristic) curve of Pd as a function of Pfa.

For the simple hypothesis testing problem, the optimal detector is given by the likelihood
ratio (LR):

TLR(x) =
pt(x)

pb(x)
≶ λ. (3)

That the likelihood ratio is optimal is known as the Neyman-Pearson theorem.14,15 Note that
the log likelihood ratio (LLR)

TLLR(x) = log pt(x)− log pb(x) ≶ λ′ = log(λ) (4)

is equivalent to Eq. (3), with λ′ = log(λ) playing the role of a “sweep variable.” This logarithmic
formulation is often more convenient.

In general, for any monotonic† function h, and any statistic T (x), the decision rule

T ′(x) = h(T (x)) ≶ h(λ) = λ′ (5)

is equivalent to the rule B(x) = {T (x) ≶ λ}. Equivalent statistics exhibit identical ROC
curve performance. This is the monotonic invariance property that will be exploited in the
reformulation of min-max clairvoyant fusion.

2.3 Composite hypothesis testing

In the composite hypothesis testing problem, we do not have a single target distribution and a
single background distribution. Instead, we have families of distributions for the target and/or
background. We parameterize these families with θt ∈ Θt and θb ∈ Θb respectively. That is,
pt(x; θt) is the distribution on x when the target is present, and pb(x; θb) is the distribution when
the target is absent. The problem is that the parameters, θt and/or θb, upon which the target
and/or background distributions depend, are themselves unknown.

This ambiguity in θ = (θt, θb) ∈ Θ also complicates the measuring of detector performance.
The definitions of Pfa and Pd in Eqs. (1,2) require that pb and pt be known. Each value of θ ∈ Θ
produces a different ROC curve. In place of a single performance measure, or even a single ROC
curve, we have a different performance for each θ.

2.4 Clairvoyant statistic

In the unrealistic case where θt and θb are both known, one can write the optimal statistic as
the simple likelihood ratio:

T (x; θt, θb) =
pt(x; θt)

pb(x; θb)
. (6)

This special statistic, which depends on a priori knowledge of the parameter values, is sometimes
called the “clairvoyant” statistic.15

†A scalar function h is monotonic if z1 > z2 implies h(z1) > h(z2).
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For composite hypothesis testing, the parameters are by definition not known. Nonetheless,
the clairvoyant statistic is a useful concept for building detectors that can be used in a composite
hypothesis testing problem. Also, some clairvoyant detectors, even though they are optimal
only for for a specific θ, may nonetheless exhibit reasonable performance over the whole range
of θ ∈ Θ.

2.5 Generalized likelihood ratio (GLR) test

The most common approach is known as the generalized likelihood ratio (GLR).15

TGLR(x) =
max
θt∈Θt

pt(x; θt)

max
θb∈Θb

pb(x; θb)
. (7)

One interpretation is that θt and θb are effectively re-estimated from each data element x using
maximum likelihood:

θ̂t(x) = argmaxθt∈Θt
pt(x; θt) (8)

θ̂b(x) = argmaxθb∈Θb
pb(x; θb) (9)

and then

TGLR(x) = T (x; θ̂t(x), θ̂b(x)) =
pt(x; θ̂t(x))

pb(x; θ̂b(x))
. (10)

Thus the GLR is like the clairvoyant statistic except that instead of knowing the parameter
values θt and θb, one estimates them from the measurement x, using maximum likelihood.

2.6 Min-max clairvoyant fusion

Schaum1 proposed CF as a generalization of the GLR. To motivate it, let us (following later
treatments by Schaum3–5 and Bajorski10–12) write the GLR as a min-max operation over the
clairvoyant statistics:

TGLR(x) =
max
θt∈Θt

pt(x; θt)

max
θb∈Θb

pb(x; θb)
(11)

= min
θb∈Θb

max
θt∈Θt

pt(x; θt)

pb(x; θb)
= min

θb∈Θb

max
θt∈Θt

T (x; θt, θb). (12)

The GLR decision rule compares this statistic to a threshold: BGLR(x) = {TGLR(x) ≶ λ}. The
CF idea is to make λ depend on the parameters θt and θb, but this requires that the threshold
be brought “inside” the min-max operator. Thus, instead of

BGLR(x) =

{
min
θb∈Θb

max
θt∈Θt

T (x; θt, θb) ≶ λ

}
, (13)
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we write

BCF(x) =

{
min
θb∈Θb

max
θt∈Θt

[
T (x; θt, θb)− λ(θt, θb)

]
≶ 0

}
, (14)

or, equivalently,

BCF(x) =

{
min
θb∈Θb

max
θt∈Θt

[
T (x; θt, θb)/λ(θt, θb)

]
≶ 1

}
. (15)

It is important to observe that this manipulated-threshold formulation of CF provides a CF
decision rule, not a CF statistic. To compute ROC curves for instance, one must produce many
decision rules.

The “art” of CF lies in the choice of λ(θt, θb); different strategies for making this choice are
called flavors.1 Choosing λ that is constant with respect to θt and θb recovers the GLR, but the
following two other flavors have also been advocated:

2.6.1 CF-cfar flavor

One of the continuum fusion flavors that is worth calling out specifically is CFAR (constant
false alarm rate) fusion.† Here λ(θt, θb) is chosen so that the associated clairvoyant statistic has
a constant false alarm rate. Specifically,

λ(θt, θb, α) = min
λ
λ s.t.

∫
T (x;θt,θb)>λ

pb(x, θb) dx ≤ α. (16)

Given this expression for λ, the binary decision rule takes the form

BCF(x, α) =

{
min
θb∈Θb

max
θt∈Θt

T (x, θt, θb)/λ(θt, θb, α) ≶ 1

}
(17)

For many distributions, Eq. (16) is a difficult implicit integral criterion, though Schaum has
shown how this integral condition can be re-expressed in terms of partial differential equations.1

And in some cases, simple analytical expressions can be found.1

It bears remarking that this formulation of CF does provide a family of decision rules (pa-
rameterized by α), but this family of decision rules cannot be described in terms of a single
statistic and a variable threshold. Further, although the individual decision rules have been
calibrated to have individual false alarm rates of α, the false alarm rate for the fused decision
rule will be larger than that. To produce a CF decision rule with a specified false alarm rate, it
is generally a matter of trial and error to find the α that leads to this specified rate.

2.6.2 CF-cpd flavor

The natural counterpoint to the CF-cfar flavor is one based on Pd instead of Pfa. In this case,

λ(θt, θb, β) = max
λ

λ s.t.

∫
T (x;θt,θb)>λ

pt(x, θt) dx ≥ β (18)

ensures that the individual decision rules (the fusees) all have a detection rate of β.

†Schaum writes:4 “It appears that one flavor of CF fills a particular theoretical niche. In CH
[composite hypothesis] problems that admit an optimal (UMP [uniformly most powerful]) solution,
one particular flavor (CFAR) appears to always generate it. This is a coveted property of any method
of solving CH problems, a property lacking in the GLRT.”

Optical Engineering 51 (2012) 111714 p.5



3. MONOTONIC RECALIBRATION OF CLAIRVOYANT STATISTICS

In this section, a more general formulation for CF is presented. To motivate this new formu-
lation, consider Eq. (15), and observe that just as T (x; θt, θb) is a clairvoyant statistic, so is
T (x; θt, θb)/λ(θt, θb) for any λ(θt, θb) > 0. Indeed, one can think of this as a θ-dependent recal-
ibration of the clairvoyant statistic. But for any scalar function h(z, θt, θb) that is monotonic
in its first argument, it is clear that T ∗(x; θt, θb) = h(T (x; θt, θb), θt, θb) is also a clairvoyant
statistic. One can then fuse this family of monotonically recalibrated clairvoyant statistics to
obtain:

TCF(x) = min
θb∈Θb

max
θt∈Θt

T ∗(x; θt, θb) (19)

= min
θb∈Θb

max
θt∈Θt

h (T (x; θt, θb), θt, θb) . (20)

What this formulation of CF provides is a single statistic, the TCF(x) defined in Eq. (20), that
can be used to detect targets based on measured pixel value x. It bears remarking, however,
that although the new formulation can produce new statistics, it does not produce any new
decision rules. In fact, from the point of view of individual decision rules, the two formulations
are equivalent. This will be clarified with two formal statements: the first asserts that any
decision rule obtained from the original formulation in Eq. (15) can be produced by the new
formalism, and the second asserts the converse.

Statement 1: Given any positive function λ(θt, θb), there exists a monotonic function
h(z, θt, θb) and a threshold ho such that the decision rule BCF(x) defined in Eq. (15) can be
obtained in terms of the statistic defined in Eq. (20) as {TCF(x) ≶ ho}.

To see this, take h(z, θt, θb) = z/λ(θt, θb) and ho = 1. Then:

{TCF(x) ≶ ho} =

{
min
θb∈Θb

max
θt∈Θt

[
h(T (x; θt, θb), θt, θb)

]
≶ ho

}
(21)

=

{
min
θb∈Θb

max
θt∈Θt

[
T (x; θt, θb)/λ(θt, θb)

]
≶ 1

}
(22)

= BCF(x). (23)

Here, Eq. (21) follows from the definition of TCF(x) in Eq. (20); Eq. (22) follows from Eq. (21)
by substitution of the assignments made to h(z, θt, θb) and ho; and Eq. (23) follows from Eq. (22)
and the definition of BCF(x) in Eq. (15).

Statement 2: For any choice of monotonic function h(z, θt, θb) and scalar threshold ho,
there exists a function λ(θt, θb) such that the decision rule given by {TCF(x) ≶ ho} is the same
as BCF(x).

To see this, first observe that since h is a monotonic function, we can define h−1(y, θt, θb) to
be the value z for which h(z, θt, θb) = y. Then, observe that for any values of θt, θb, and ho, the
following three expressions are equivalent:

h (T (x; θt, θb), θt, θb) ≶ ho, (24)

T (x; θt, θb) ≶ h−1(ho, θt, θb), (25)

T (x; θt, θb)/h
−1(ho, θt, θb) ≶ 1. (26)
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It follows that
min
θb∈Θb

max
θt∈Θt

h (T (x; θt, θb), θt, θb) ≶ ho (27)

is equivalent to
min
θb∈Θb

max
θt∈Θt

T (x; θt, θb)/h
−1(ho, θt, θb) ≶ 1, (28)

which tells us that by using λ(θt, θb) = h−1(ho, θt, θb) as the adjustable threshold function in
Eq. (15), we obtain the decision rule {TCF(x) ≶ ho}.

4. FAST ALGORITHMS FOR TWO FUSION FLAVORS

What the formulation in Section 3 provides is a way to think about detector fusion in terms of a
min-max over clairvoyant statistics that have been recalibrated using the monotonic function h.
For the CF-cfar flavor, we recalibrate so that T ∗(x; θt, θb) indicates the false alarm rate; for
CF-cpd T ∗(x; θt, θb) corresponds to detection rate. This formulation provides two advantages.

One advantage is that the decision rules will be of the form T (x) ≶ λ. In some cases, the
original manipulated-threshold formulation of CF can lead to detectors of this form, but that
is not generally the case for CF-cfar or CF-cpd. For CF-cfar, as seen in Eq. (17), the original
formulation gives a decision rule of the form T (x, α) ≶ 1. Similarly, for CF-cpd, we would
obtain a decision rule of the form T (x, β) ≶ 1.

A second advantage of this formulation is that it leads to efficient implementations for the
CF-cfar and CF-cpd flavors. These fast algorithms apply to the case in which the target pa-
rameters are unknown, but the background parameters are known. This is usually the case in
hyperspectral imagery, since there are typically many pixels from which to estimate the back-
ground (and with which to fit parameters that might otherwise be unknown), but the target
estimation is done separately for each pixel.

4.1 CF-cfar

For CF-cfar, we want to recalibrate all of the clairvoyant statistics so that, for a given threshold,
they all have the same false alarm rate. A simple way to achieve this is to individually recalibrate
each statistic so that T ∗(x, θ) = h(T (x, θ), θ) is equal to one minus the false alarm rate. That
is: the decision rule {T ∗(x, θ) ≶ λ} has a false alarm rate equal to 1 − λ. This approach is
described in detail in Algorithm 1. In this implementation, wji corresponds the jth recalibrated
clairvoyant statistic evaluated at xi; that is, wji = T ∗(xi, θj). In terms of the uncalibrated
clairvoyant statistic T (x, θ), this false alarm rate is given by the fraction of xi values for which
T (xi, θ) > T (x, θ). Thus, wji = #{i′ : vji′ > vji}/n, where vji = T (xi, θj) and n is the number
of samples in the base data set. This can be rapidly computed by first sorting the values of vji
(with j fixed, and the i index sorted over), and then assigning wji to the rank of vi in that list.
Since this is done for each of k values of θ, the total computation complexity is O(kn log n).

As written, Algorithm 1 can be used to search for rare targets. The input is all the pixels
in the image, and the output is a score ui associated with each pixel xi. Those pixels with the
largest values are the most likely to be targets.
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Algorithm 1 CF-cfar flavor of min-max clairvoyant fusion; for the case when background is
known and target parameter θt is unknown

Require: Clairvoyant statistic T (x, θt)
Require: Finite representative set {θ1, θ2, . . . , θk} ⊂ Θt

Require: Base data set x1, . . . ,xn known (or assumed) to be non-target pixels
for each θj in {θ1, . . . , θk} do

Let vji = T (xi, θj) for i = 1 . . . n
Let wji = Rank(vji)/n for i = 1 . . . n

end for
Let ui = maxj wji for i = 1 . . . n

Output: u1, . . . , un corresponding to the CF-cfar statistic evaluated at x1, . . . ,xn.

It is also possible to apply this algorithm “offline” to new data points x that were not in
the original base dataset. The details are described in Algorithm 2. The wj in this algorithm
corresponds to the recalibration of the jth clairvoyant statistic T ∗(x, θj). The maximum of the
wj values corresponds to the maximum in Eq. (20).

Algorithm 2 Offline application of CF-cfar

Require: Input value x
Require: Clairvoyant statistic T (x; θt)
Require: Finite representative set {θ1, θ2, . . . , θk} ⊂ Θt

Require: Values vji and wji for j = 1 . . . k and i = 1 . . . n; these will have been computed in
Algorithm 1.
for each θj in {θ1, . . . , θk} do

Let v = T (x, θj)
Let i1 = argmaxi vji s.t. vji ≤ v
Let i2 = argmini vji s.t. v ≤ vji
Let p = (v − vji1)/(vji2 − vji1)
{Note that i1, i2, p satisfy: v = (1− p)vji1 + pvji2 .}
Let wj = (1− p)wji1 + pwji2

end for
Let u = maxj wj.

Output: u is the CF-cfar statistic for x

4.2 CF-cpd

For the CF-cpd flavor, the situation is complicated by the fact that the target distribution pt(x)
depends on the target strength θt, so the fusion step is not as straightforward. In particular,
besides the base data set {x1, . . . ,xn} that was needed for the CF-cfar flavor, a target data
set is also needed. Specifically, yij is the measurement (e.g., radiance spectrum) that would be
observed at the ith pixel if the target strength in that pixel were given by θj. For many problems
of interest, yij is a simple function of the target-free pixel value xi and the target strength θj;
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for instance, in the additive target model described in the next section, yij = xi + θjs, where s
is the target signature.

For any given θt, we want to recalibrate the clairvoyant statistic so that it corresponds to the
detection rate Pd; specifically, we will construct h so that the decision rule {T ∗(x, θ) ≶ λ} will
have a detection rate Pd = 1− λ. That is, the recalibrated T ∗(x, θj) is assigned to the fraction
of points for which T (yij, θj) < T (x, θj). As with the CF-cfar case, we use wji to correspond to
the recalibrated statistic: T ∗(xi, θj). The details are given in Algorithm 3.

Algorithm 3 CF-cpd flavor of min-max clairvoyant fusion

Require: Clairvoyant statistic T (x; θt)
Require: Finite representative set {θ1, θ2, . . . , θk} ⊂ Θt

Require: Base data set x1, . . . ,xn
Require: Target data set yij for i = 1, . . . , n and j = 1, . . . , k

for each θj in {θ1, . . . , θk} do
Let vi = T (xi, θj) for i = 1 . . . n
Let v+

i = T (yij, θj) for i = 1 . . . n
Let wji = #{i′ : v+

i′ < vi}/n for i = 1 . . . n
end for
Let ui = maxj wji for i = 1 . . . n

Output: u1, . . . , un corresponding to the CF-cpd statistic evaluated at x1, . . . ,xn.

By sorting the vi and v+
i arrays, which takes O(n log n) time, one can perform the assignment

to wji for all values of i in O(n) time. Thus, the full algorithm can be run in O(kn log n) time.

5. ADDITIVE TARGET SIGNAL

Although CF has been demonstrated on a variety of problems,1–13 that variety has been restricted
to those problems for which a CF solution (in particular, CF-cfar and in some cases CF-cpd)
could be derived analytically. Armed with the algorithms in the previous section, that list
of problems will be extended to include a class with additive targets on various background
distributions.

In the additive target model, the background is given by a known distribution pb(x), and to
that background, a target signal ts has been added. Here the target “signature” s is known,
but the target strength is given by the parameter θt = t, and is unknown. The null hypothesis
is that t = 0, and the (one-sided) alternative is that t > 0.

Ho : xb ∼ pb(x) (29)

H1 : xt = xb + ts ∼ pt(x) = pb(x− ts) (30)

The additive target model has proved useful in particular for plume detection in hyperspectral
imagery.16–19

Optical Engineering 51 (2012) 111714 p.9



5.1 Gaussian background

An instructive special case is the Gaussian:

pb(x) = (2π)−d/2|R|−1/2 exp
[
−(x− µ)TR−1(x− µ)/2

]
(31)

where µ is the mean, R is the covariance, and d is the number of spectral channels. We can
invoke a linear whitening transform of the data,

x← R−1/2(x− µ), (32)

t← t
√

sTR−1s, (33)

s← R−1/2s/
√

sTR−1s. (34)

In these coordinates, we have 〈x〉 = 0 and
〈
xxT

〉
= I. We also have a normalized signature

sT s = 1, and t measures signal strength as a dimensionless quantity. And in these coordinates,
we can rewrite Eq. (31)

pb(x) = (2π)−d/2 exp
[
−xTx/2

]
. (35)

The clairvoyant detector is given by the the likelihood ratio

T (x, t) =
pt(x, t)

pb(x)
= exp

[
−(x− ts)T (x− ts)/2 + xTx/2

]
= exp

[
tsTx− t2/2

]
≶ λ (36)

which is equivalent to the expression

T ∗(x, t) = sTx ≶
1

t
log λ+

t

2
= λ∗. (37)

Here, the test statistic itself (sTx) does not depend on the signal strength t. Further, as Kay
notes in reference to Equation (6.3) in his book,15 the dependence of the threshold on t is
“illusory.”† The threshold λ∗ that achieves a given false alarm rate, for instance, does not
depend on t. This statistic is called the adaptive matched filter (AMF)20,21 since in the original
(unwhitened) coordinates, it is given by T (x) = sTR−1(x − µ), which is adapted to the mean
µ and covariance R of the original data.

This problem – additive target with Gaussian background – is one of the few composite
hypothesis testing problems that admits a uniformly most powerful (UMP) solution; and the
AMF is the UMP solution. For Pfa > 0.5, however, the GLR fails to reproduce the AMF.‡

However, the CF-cfar flavor works for all values of Pfa and for this reason is favored.4,8

A number of departures from this ideal of additive target with Gaussian background are
discussed in Ref. [22], but one in particular is to consider distributions pb(x) that are not

†See Chapter 3.4 in Lehmann and Romano14 for a more formal treatment, which speaks of families of
distributions p(x, t) having a “monotone likelihood ratio” when p(x, t′)/p(x, t) depends monotonically
on a function T (x) whenever t′ > t. In this case, T (x) = sTx.
‡Many authors get around this by taking the sign of the square root to be the sign of sTx, but this

is not justified by the GLR formulation.
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Gaussian. A natural extension that does not require the introduction of a lot of new parameters
is the elliptically-contoured distribution.23–28 We still perform the whitening transformation
in Eq. (32), but we end up with two new distributions: multivariate-t and Laplacian. Both
distributions exhibit fatter-than-Gaussian tails, which is often observed in multispectral data.
The multivariate-t has the flexibility of an adjustable parameter ν, and is asymptotically fatter
than the Laplacian. On the other hand, the Laplacian is (sometimes) algebraically simpler than
the multivariate-t and does not require the estimation of a parameter ν.

5.2 Multivariate-t distribution

The multivariate-t distribution25–27 is given by

p(x, ν) = c

[
1 +

xTx

ν − 2

]−(d+ν)/2

, (38)

where c is the normalizing constant, d is the number of spectral channels, and ν is a scalar
parameter that characterizes the distribution. Smaller ν corresponds to fatter tails; and as
ν → ∞, the distribution becomes Gaussian. (Also, recall that x has been whitened and has
unit covariance.)

The clairvoyant statistic for the multivariate-t distribution is given by:

T (x, t) =
2tsTx− t2

1 + xTx/(ν − 2)
. (39)

In the matched-filter-residual (MFR) projection,22,29 we write x in terms of its matched filter
component, and a residual component that corresponds to the magnitude of the signal with the
matched filter projected out:

MF = sTx (40)

R =
√

xTx− (sTx)2 (41)

Note that MF and R have the same “units” as x, and that (MF)2 + (R)2 = xTx. We remark
that this is a kind of “folded space” discussed in Ref. [4]. In Fig. 1, the clairvoyant decision rule
of Eq. (39) is seen to be a semicircle in MFR space.

The GLR solution for the multivariate-t distribution is given by31

T (x) =
sTx√

1 + xTx/(ν − 2)
(42)

which lies “between” the adaptive matched filter (AMF)20,21 and the adaptive coherence estima-
tor (ACE).32,33 In particular, the ν → ∞ limit, which corresponds to a Gaussian distribution,
leads to the AMF detector; and the ν → 2 limit, which corresponds to a very heavy-tailed
distribution, leads to the ACE detector.†

†By an odd coincidence, this detector has the same form as the Kelly detector,34 but with (ν − 2)
replacing the number n of data samples. The two are qualitatively different: in addition to being
derived under different assumptions (multivariate-t versus Gaussian), the size of n is generally much
larger than (ν − 2).
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(c) t = 20

Figure 1. Clairvoyant detectors plotted in MFR coordinates for the additive target model, with the
background given by the multivariate-t distribution with d = 5 spectral channels and parameter value
ν = 5. Each panel shows a single clairvoyant detector, optimized for a specific signal strength t, with
the threshold adjusted so that the false alarm rates are: 0.02 (dashed), 0.01 (dashed), 0.005 (solid),
0.002 (dashed), and 0.001 (dashed). In all cases, the detector is a family of semi-circles, though the
the semicircles may curve upward or downward (or, at the transition between those two, they may
be horizontal lines, same as the adaptive matched filter). For the upward curving semicircles (e.g., in
panel (a)), the detections are the points inside the circles; for the downward curving semicircles (e.g.,
in panel (c)) the detections are outside the circles. The circles are the optimal boundaries between
the non-target pixels (indicated as dots on these plots), and the target pixels (which are not shown,
but would have a similar distribution as the plotted dots, except translated upward by an amount
t). Looking specifically at panel (a), although this detector is optimal for t = 4, it has the unusual
property that it would fail to detect a pixel with very high signal strength; e.g., a pixel of strength 20
would be outside the Pfa = 0.005 circle that was optimized for detecting pixels with t = 4. In panel
(c), we see that for large signal t = 20, the detector will continue to detect even stronger detections;
but this detector exhibits a different unusual property: pixels with large negative matched filter values
will be treated as detections. The t → ∞ limit of this clairvoyant detector approaches the classic RX
detector.30 Note the computation of threshold required to observe specified false alarm rates was based
on a random sample of 106 points, but for clarity the figure only shows 104 points.
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(c) CF-cpd

Figure 2. The clairvoyant detectors in Fig. 1 are fused to produce GLR, CF-cfar, and CF-cpd detectors;
in all three cases, parameters are adjusted so that Pfa = 0.005. (a) For the GLR, the clairvoyant
detectors (plotted here with t = 0.5, 1.0, 1.5, . . . , 20) have thresholds chosen so that they all have the
same likelihood ratio; in the continuum limit, this fusion of semicircles leads to a hyperbolic curve. (b)
For CF-cfar, the clairvoyant detectors (plotted here with t = 1, 2, 3, . . . , 15 and t = 20, 25, 30, . . . , 100)
all have the same individual false alarm rate; in this case α = 0.0013. (c) For CF-cpd, the clairvoyant
detectors (plotted here with t = 0, 1, 2, . . . , 10) all have the same detection rate; in this case β = 0.0011.

Fig. 2 illustrates decision rules obtained as a fusion of clairvoyant decision rules using GLR,
CF-cfar, and CF-cpd fusion. The performance of these three detectors are shown for a particular
signal strength (t = 3) in Fig. 3, and compared to the clairvoyant detector, which of course
outperforms them all. Here the ROC curves show that CF-cfar is somewhat better in the very
low false alarm rate regime and the very high detection rate regime, whereas the GLR is better
over an intermediate range of false alarm rates. For this problem, CF-cpd does not exhibit much
utility.

Although we do not have the luxury of an analytic closed-form solution for the statistic
T (x) that corresponds to CF-cfar (or to CF-cpd) for this problem, we can efficiently compute
T (x) for every point in the dataset using Algorithm 1 (or Algorithm 3), and this enables us to
efficiently compute the ROC curves shown in Fig. 3.

We can also compute performance as a function of signal strength t. The plots in Fig. 4 and
Fig. 5 compare the “power” (i.e., detection rate at Pfa = 0.005) of the different fusion detectors.
The CF-cpd actually does best at very low signal strength, the CF-cfar does best at very high
signal strength, and GLR shows the best performance over intermediate ranges. One can further
observe that the GLR always exhibits increasing detection rate with increasing target strength,
even though the individual clairvoyant statistics do not. CF-cfar also exhibits this property,
whereas CF-cpd does not.
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Figure 3. (a) ROC curves for three different flavors of min-max clairvoyant fusion, where the target
strength is given by t = 3, and the background distribution is multivariate-t with d = 5 and ν = 5. (b)
To accentuate the differences, this plot shows the change in detection rate compared to the clairvoyant
detector. Both experiments are based on a simulated dataset with n = 106 points.
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Figure 4. Power plot for three different flavors of min-max clairvoyant fusion detectors. In this case,
the distribution is multivariate-t, with d = 5 and ν = 5. The left panel is detection rate versus dimen-
sionless signal strength, and the right panel displays the same data, but with the optimal clairvoyant
performance subtracted. The detection rate is computed at a threshold value that gives Pfa = 0.005 for
all detectors, and the runs are based on simulated imagery with n = 106 pixels. The plots show that
the GLR detector is a useful general-purpose detector with good performance over the whole range of
signal strengths. The CF-cfar detector exhibits poorer performance at small signal strengths, but as
the signal strength increases, CF-cfar outperforms GLR. The CF-cpd detector exhibits generally poor
performance overall, but at very small signal strength, it is the best of the three.
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Figure 5. Same as Fig. 4, but with d = 128 instead of d = 5, which is in the hyperspectral regime. As
seen in the d = 5 case, GLR behaved well overall and was best for intermediate signal strength, but
CF-cfar performed somewhat better for strong signals and CF-cpd did somewhat better for very weak
signals.

5.3 Laplacian distribution

Another elliptically-contoured distribution is the Laplacian:28

p(x) = c exp
[
−
(
xTx

)1/2
]
. (43)

For the Laplacian distribution, the clairvoyant statistic is given by28

T (x, t) =
√

xTx−
√

(x− ts)T (x− ts). (44)

Whereas the clairvoyant detectors for the multivariate-t are semicircles in MFR space, they are
hyperbolic for the Laplacian, as seen in Fig. 6. They do not, for instance, exhibit the counter-
intuitive property of decreasing detection rate with increasing target strength that was seen in
the multivariate-t case.

The GLR solution for the Laplacian is given by7

T (x) = sign(sTx)
[√

xTx−
√

xTx− (sTx)2
]
. (45)

Fig. 6(a) illustrates the GLR detector as a fusion of clairvoyant detectors.

Fig. 6(b,c) illustrates the CF-cfar and CF-cpd fusion detectors. As with the multivariate-
t, we do not have simple closed-form solutions for these detectors, but we can obtain them
numerically using the algorithms in Section 4. The performance of these detectors is compared
to the GLR and to the ideal (and unattainable) clairvoyant detector in Fig. 7. Similar to what
was seen for the multivariate-t in Fig. 4 and Fig. 5, the detector performance depends on signal
strength: CF-cpd is best for very small signals, CF-cfar is best for large signals, and GLR did
well over the full range of signal strengths.
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Figure 6. Similar to Fig. 2, but using the Laplacian instead of the multivariate-t as the non-Gaussian
background distribution. Here the clairvoyant detectors, defined by Eq. (44), are hyperbolas. (a) For
the GLR, the detectors have a common likelihood ratio; this fusion of hyperbolas leads to a parabolic
curve. (b) For the CF-cfar detector, the clairvoyant detectors have thresholds chosen so that the
individual false alarm rates are the same; in this case α = 0.0021. (c) The CF-cpd detector is based on
the fusion of detectors with the same detection rate; the result is equivalent to the t = 0 clairvoyant
detector, which is equivalent to the ACE detector. In all three cases, the final false alarm rate is
Pfa = 0.005.
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Figure 7. Same as Fig. 4, but using the Laplacian instead of the multivariate-t as the non-Gaussian
background distribution.
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6. CONCLUSIONS

Min-max clairvoyant fusion (CF) provides an intriguing alternative to the generalized likelihood
ratio (GLR) that includes GLR as a special case; in that sense, it is an “even more generalized”
likelihood ratio. The manipulated-threshold formulation of CF can be further generalized by
using monotonic recalibration of clairvoyant statistics before the min-max fusion step. This new
formulation allows us to produce new statistics, but it is important to acknowledge that it does
not produce new decision rules. It is also important to point out that not every one-parameter
family of CF decision rules can be converted into a statistic. And even for those that can, this
paper provides an explicit procedure for constructing that statistic only for the CF-cfar and
CF-cpd cases.

Although CF offers seemingly open-ended flexibility (in terms of the function λ(θt, θb) in
Eq. (15), or the function h(x, θt, θb) in Eq. (20)), three of the flavors – GLR, CF-cfar, and
CF-cpd – are unambiguously specified and do not require a user to exercise domain expertise
or arbitrary judgment. In the original formulation of CF, however, CF-cfar and CF-cpd are
difficult to implement except in special cases. The monotonic recalibration approach leads to
algorithms for CF-cfar and CF-cpd that work when the background distribution is specified in
terms of data (instead of a formula), and these algorithms permit more extensive numerical
testing and comparison of CF detectors.

The numerical results presented here suggest that there are regimes where CF-cfar is better
(high signal strength and/or low false alarm rate), and regimes where CF-cpd is better (very
low signal strength), but that over a wide range of intermediate regimes, GLR does very well.
Further studies in more operational circumstances may be called for, and it is hoped that this
formulation will facilitate those studies.
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